

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 3807-3809

## Stereoselective alkenylation of a 1,3-disubstituted pyrazol-5-one through ring transformation of 2H-pyran-2-ones

Diptesh Sil,<sup>a</sup> Rishi Kumar,<sup>b</sup> Ashoke Sharon,<sup>b</sup> Prakas R. Maulik<sup>b</sup> and Vishnu Ji Ram<sup>a,\*</sup>

<sup>a</sup> Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226001, India

Received 31 January 2005; revised 24 March 2005; accepted 30 March 2005 Available online 16 April 2005

**Abstract**—A one-pot stereoselective alkenylation of 1-(3-chlorophenyl)-3-methyl-1,4-dihydro-5-pyrazolone **2** by 2*H*-pyran-2-ones **1** to give (*E,E*)-5-aryl-5-[1-(3-chlorophenyl)-3-methyl-5-oxo-1,5-dihydropyrazol-4- ylidene]-3-methylsulfanyl-pent-3-en-carbonitrile/methyl carboxylate **3** has been delineated through ring transformation in moderate yields. © 2005 Elsevier Ltd. All rights reserved.

Pyrazoles are key structures in numerous compounds of therapeutic importance.<sup>1</sup> Compounds containing this ring system are known to display diverse pharmacological activities such as antibacterial,<sup>2</sup> antifungal,<sup>2</sup> anti-inflammatory,<sup>3</sup> analgesic,<sup>3</sup> and antipyretic.<sup>3</sup> 3-Alkyl-4-arylmethylpyrazol-5-ones I are reported to exhibit potent antihyperglycemic<sup>4</sup> activity, while 1-phenyl-3-tetra-fluoroethylpyrazol-5-one II is an anxiolytic.<sup>5</sup> Thus, the biological activities of pyrazol-5-ones depend on the nature of the substituents (Fig. 1).

The therapeutic importance of this class of compounds inspired us to develop an innovative approach to synthesize III directly from 5-pyrazolones in order to explore

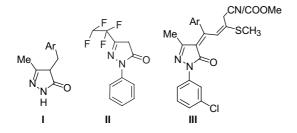



Figure 1.

Keywords: Ring transformation; Stereoselective; Pyrazol-5-one; 2H-pyran-2-one.

their pharmacological activities. Previously, 4-substituted pyrazoles were produced either by the condensation—cyclization of methyl arylacetoacetates and arylhydrazine<sup>4</sup> or by reduction of 4-arylidene/alkenylidene derivatives derived from the condensation of a 5-pyrazolone with an aromatic or aliphatic aldehyde. Our approach to introduce a substituent at position 4 in 5-pyrazolone 2 is entirely different and involves a base-catalyzed ring transformation of 2*H*-pyran-2-ones 1.

Here, we report the construction of pyrazoles 3 through ring transformation of 6-aryl-4-methylsulfanyl-2*H*-pyr-an-2-one-3-carbonitrile/methyl carboxylate<sup>6</sup> 1 with 1-(3-chlorophenyl)-3-methyl-1,4-dihydro-5-pyrazolone 2. Thus, stirring an equimolar mixture of 1, 2 and powdered KOH in dry DMF for 24 h at ambient temperature led to the chromatographically pure single geometrical *E*-isomer 3 in moderate yield.<sup>7</sup>

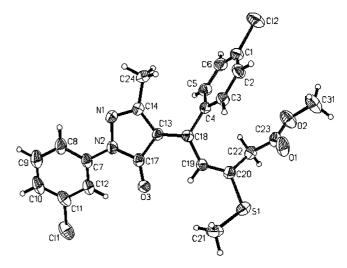
The topography of the precursor 6-aryl-4-methylthio-2*H*-pyran-2-one-3-carbonitrile/methyl carboxylate is such that it may be viewed as a cyclic ketene hemithioacetal, of which position 6 is highly prone to nucleophilic attack due to extended conjugation and the presence of electron withdrawing substitutents CN or COOCH<sub>3</sub> at position 3 of the pyran ring.

The greater electrophilicity of position 6 compared to 4 makes position 6 of the pyran ring more vulnerable to nucleophilic attack. Thus, the carbanion generated at position 4 of 1,4-dihydro-5-pyrazolone 2 attacks at position 6 of the pyran ring with ring-opening and

<sup>&</sup>lt;sup>b</sup>Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226001, India

<sup>&</sup>lt;sup>★</sup>CDRI Communication No. 6660.

<sup>\*</sup>Corresponding author. Tel.: + 91 522 2262411; fax: +91 522 2623405; e-mail: vjiram@yahoo.com


| 3 | Ar                                               | X                  | Yield (%) |
|---|--------------------------------------------------|--------------------|-----------|
| a | $C_6H_5$                                         | COOCH <sub>3</sub> | 55        |
| b | 4-ClC <sub>6</sub> H <sub>4</sub>                | $COOCH_3$          | 60        |
| c | $4-BrC_6H_4$                                     | $COOCH_3$          | 58        |
| d | $3,4-\text{Cl}_2\text{C}_6\text{H}_3$            | $COOCH_3$          | 63        |
| e | 2-furyl                                          | $COOCH_3$          | 65        |
| f | 2-thienyl                                        | $COOCH_3$          | 62        |
| g | $C_6H_5$                                         | CN                 | 60        |
| h | 4-BrC <sub>6</sub> H <sub>4</sub>                | CN                 | 52        |
| i | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | CN                 | 57        |
| j | 4-ClC <sub>6</sub> H <sub>4</sub>                | CN                 | 56        |

Scheme 1. Proposed mechanism for the formation of 3.

decarboxylation as depicted in Scheme 1. The initially formed ring transformed intermediate A tautomerizes to 3 to attain a more stable configuration with extended conjugation. Non-covalent interactions also play an important role in the stereoselectivity.

All the synthesized compounds were fully characterized by spectroscopic and elemental analyses.<sup>7</sup>

The structure of **3b** was further confirmed through single crystal X-ray diffraction analysis. The ORTEP diagram of the compound is shown in Figure 2.



**Figure 2.** ORTEP diagram of **3b** showing the X-ray molecular structure at the 30% probability level.

The X-ray structure revealed the presence of a network of strong intermolecular H-bonding between atoms C21–H21B···O3 and C9–H9···O1 with interatomic distances 2.776 and 2.891 Å, respectively.

In summary, our methodology opens a new avenue to the synthesis of substituted pyrazol-5-ones, which may be useful precursors for the construction of various heterocycles of therapeutic importance. The methodology is very simple and economical. No catalyst is required in this ring transformation reaction.

## Acknowledgements

D.S. and A.S. thank the CSIR, New Delhi, India for Senior Research Fellowships. The authors thank SAIF, CDRI Lucknow for providing spectroscopic and analytical data.

## References and notes

- 1. Haddad, N.; Salvango, A.; Busacca, C. *Tetrahedron Lett.* **2004**, *45*, 5935–5937.
- Tanitame, A.; Oyamada, Y.; Ofugi, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, Jun-ichi. J. Med. Chem. 2004, 47, 3693–3696.
- 3. Tsurumi, K.; Abe, A.; Fujimura, H.; Asai, H.; Nagasaka, M.; Mikaye, H. Folia Pharmacol. Jpn. 1976, 72, 41.
- Kees, K. L.; Fitzgerald, J. J.; Steiner, K. E.; Mattes, J. F.; Mihan, B.; Tosi, T. J. Med. Chem. 1996, 39, 3920–3926.
- Athina, G.; Babaev, E.; Dearden, J.; Dehaen, W.; Filimonov, D.; Galaeva, I.; Krajneva, V.; Lagunin, A.; Macaev, F.; Molodavkin, G.; Poroikov, V.; Pogrebnoi, S.; Saloutin, V.; Stepanchikova, A.; Stingaci, E.; Tkach, N.; Vlad, L.; Voronina, T. *Bioorg. Med. Chem.* 2004, 12, 6559–6568.
- (a) Ram, V. J.; Verma, M.; Hussaini, F. A.; Shoeb, A. J. Chem. Res. (S) 1991, 98–99; (b) Ram, V. J.; Verma, M.; Hussaini, F. A.; Shoeb, A. Liebigs. Ann. Chem. 1991, 1229–1231.

- 7. Typical procedure. A mixture of 2H-pyran-2-one 1 (1 mmol), 1-(3-chlorophenyl)-3-methyl-1,4-dihydropyrazolone 2 (1 mmol) and powdered KOH (1.5 mmol) in dry DMF (15 mL) was stirred for 24 h at room temperature. The reaction mixture was poured into ice-water and neutralized with 10% HCl. The separated solid was filtered, washed with water and dried. The crude product was purified on a silica gel column to afford 3 as a single isomer. Compound 3g: yield 60%, mp 98–100 °C, IR (KBr)  $v = 2202 \, \mathrm{cm}^{-1}$  (CN), 1593 cm<sup>-1</sup> (CO); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  1.57 (s, 3H, CH<sub>3</sub>), 2.21 (s, 3H, SCH<sub>3</sub>), 4.74 (s, 1H, CH), 4.91 (s, 2H, CH<sub>2</sub>), 7.14–7.18 (m, 1H, ArH), 7.27–7.54 (m, 7H, ArH), 7.89–7.93 (m, 1H, ArH); MS (FAB) 408 (M<sup>+</sup>+1). Anal. Calcd for C<sub>22</sub>H<sub>18</sub>ClN<sub>3</sub>OS: C, 64.78; H, 4.45; N; 10.30. Found: C, 64.65; H, 4.55; N, 10.11.
  - Compound **3j**: yield 56% mp 118–120 °C, IR (KBr)  $v = 2203 \text{ cm}^{-1}$  (CN), 1593 cm<sup>-1</sup> (CO); <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>):  $\delta$  1.57 (s, 3H, CH<sub>3</sub>), 2.21 (s, 3H,

- SCH<sub>3</sub>), 4.76 (s, 1H, CH), 4.89 (s, 2H, CH<sub>2</sub>), 7.15–7.47 (m, 6H, ArH) 7.88–7.92 (m, 1H, ArH), 8.02–8.04 (m, 1H, ArH); MS (FAB) 443 (M<sup>+</sup>+1). Anal. Calcd for C<sub>22</sub>H<sub>17</sub>Cl<sub>2</sub>N<sub>3</sub>OS: C, 59.73; H, 3.87; N; 9.50. Found: C, 59.84; H, 3.66; N, 9.67.
- Crystal data of 3b: C<sub>23</sub>H<sub>20</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>3</sub>S M = 475.37, triclinic, space group P-1, a = 9.188(1), b = 9.254(1), c = 14.500(2) Å, α = 73.41(1), β = 75.12(1), γ = 80.08(1), V = 1135.4(2) Å<sup>3</sup>, T = 293 K, Z = 2, μ = 0.41 mm<sup>-1</sup>, R1 = 0.0492 for 1864 F<sub>0</sub> > 4 sig(F<sub>0</sub>) and 0.1272 for all 3959 data. CCDC 264229 contains the supplementary crystallographic data. These data can be obtained free of charge from http://www.ccdc.cam.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk]. Programs: XSCANS [Siemens Analytical X-ray Instrument Inc.: Madison, WI, USA 1996], SHELXTL-NT [Bruker AXS Inc.: Madison, WI, USA 1997].